Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 198: 106499, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38640690

RESUMO

Determining the proximity of ecosystems to tipping points is a critical yet complex task, heightened by the growing severity of climate change and local anthropogenic stressors on ecosystem integrity. Spatial Early Warning Signals (EWS) have been recognized for their potential in preemptively signaling regime shifts to degraded states, but their performance in natural systems remains uncertain. In this study, we investigated the performance of 'recovery length' - the spatial extent of recovery from a perturbation - and spatial EWS as early warnings of regime shifts in Posidonia oceanica meadows. Our experimental approach involved progressively thinning the P. oceanica canopy, from 0 to 100%, at the edge of a dead-matte area - a structure formed by dead P. oceanica rhizomes and colonized by algal turfs - to promote the propagation of algal turfs. We calculated recovery length as the distance from the dead-matte edge to the point where algal turfs colonized the canopy-thinned region. Our results showed a linear increase in recovery length with canopy thinning, successfully anticipated the degradation of P. oceanica. While spatial skewness decline with increased canopy degradation, other spatial EWS, such as Moran correlation at lag-1, low-frequency spatial spectra, and spatial variance, were ineffective in signaling this degradation. These findings underscore the potential of recovery length as a reliable early warning indicator of regime shifts in marine coastal ecosystems.

2.
Nat Commun ; 15(1): 2126, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459105

RESUMO

Ocean warming and acidification, decreases in dissolved oxygen concentrations, and changes in primary production are causing an unprecedented global redistribution of marine life. The identification of underlying ecological processes underpinning marine species turnover, particularly the prevalence of increases of warm-water species or declines of cold-water species, has been recently debated in the context of ocean warming. Here, we track changes in the mean thermal affinity of marine communities across European seas by calculating the Community Temperature Index for 65 biodiversity time series collected over four decades and containing 1,817 species from different communities (zooplankton, coastal benthos, pelagic and demersal invertebrates and fish). We show that most communities and sites have clearly responded to ongoing ocean warming via abundance increases of warm-water species (tropicalization, 54%) and decreases of cold-water species (deborealization, 18%). Tropicalization dominated Atlantic sites compared to semi-enclosed basins such as the Mediterranean and Baltic Seas, probably due to physical barrier constraints to connectivity and species colonization. Semi-enclosed basins appeared to be particularly vulnerable to ocean warming, experiencing the fastest rates of warming and biodiversity loss through deborealization.


Assuntos
Biodiversidade , Invertebrados , Animais , Oceanos e Mares , Peixes , Temperatura , Água , Ecossistema , Aquecimento Global
3.
Environ Res ; 241: 117629, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967703

RESUMO

Despite the effects of ocean acidification (OA) on seagrasses have been widely investigated, predictions of seagrass performance under future climates need to consider multiple environmental factors. Here, we performed a mesocosm study to assess the effects of OA on shallow and deep Posidonia oceanica plants. The experiment was run in 2021 and repeated in 2022, a year characterized by a prolonged warm water event, to test how the effects of OA on plants are modulated by thermal stress. The response of P. oceanica to experimental conditions was investigated at different levels of biological organization. Under average seawater temperature, there were no effects of OA in both shallow and deep plants, indicating that P. oceanica is not limited by current inorganic carbon concentration, regardless of light availability. In contrast, under thermal stress, exposure of plants to OA increased lipid peroxidation and decreased photosynthetic performance, with deep plants displaying higher levels of heat stress, as indicated by the over-expression of stress-related genes and the activation of antioxidant systems. In addition, warming reduced plant growth, regardless of seawater CO2 and light levels, suggesting that thermal stress may play a fundamental role in the future development of seagrass meadows. Our results suggest that OA may exacerbate the negative effects of future warming on seagrasses.


Assuntos
Alismatales , Água do Mar , Água , Acidificação dos Oceanos , Concentração de Íons de Hidrogênio , Alismatales/fisiologia , Ecossistema
4.
Mar Environ Res ; 188: 106035, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37267663

RESUMO

Brown algae of the genus Ericaria are habitat formers on Mediterranean rocky shores supporting marine biodiversity and ecosystem functioning. Their population decline has prompted attempts for restoration of threatened populations. Although epilithic microbial biofilms (EMBs) are determinant for macroalgal settlement, their role in regulating the recovery of populations through the recruitment of new thalli is yet to be explored. In this study, we assessed variations in microbial biofilms composition on the settlement of Ericaria amentacea at sites exposed to different human pressures. Artificial fouling surfaces were deployed in two areas at each of three study sites in the Ligurian Sea (Capraia Island, Secche della Meloria and the mainland coast of Livorno), to allow bacterial biofilm colonization. In the laboratory, zygotes of E. amentacea were released on these surfaces to evaluate the survival of germlings. The EMB's composition was assessed through DNA metabarcoding analysis, which revealed a difference between the EMB of Capraia Island and that of Livorno. Fouling surfaces from Capraia Island had higher rates of zygote settlement than the other two sites. This suggests that different environmental conditions can influence the EMB composition on substrata, possibly influencing algal settlement rate. Assessing the suitability of rocky substrata for E. amentacea settlement is crucial for successful restoration.


Assuntos
Ecossistema , Animais , Humanos , Biodiversidade , Biofilmes
5.
Sci Total Environ ; 894: 164972, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37336396

RESUMO

The Tuscan Archipelago, with its great environmental and economic importance, is one of the highest oil spill density areas in the Western Mediterranean. In this study, an interdisciplinary approach, based on numerical applications and experimental methods, was implemented to quantify the risk of oil spill impact along the rocky shores of this archipelago in relation to the maritime activities. The risk, defined as a combination of the hazard and the damage, was quantified for the biennial 2019-2020 in order to account for the effects generated by the COVID-19 pandemic restrictions on the local maritime traffic. A high-resolution oceanographic and particle tracking model was applied to simulate the trajectories of possible oil spill events and to quantify the hazard of impacts on the coast of numerical particles, daily seeded in correspondence of those marine sectors that are characterised by relevant traffic of vessels. The damage, expressed as the product of exposure and vulnerability, was estimated following an extensive sampling approach aimed at quantifying the ecological status of the rocky shores in four selected islands of the Tuscan Archipelago. Results revealed and quantified the direct relationship between the temporary reduction of the maritime traffic due to the pandemic restrictions, and the probability of suffering damage from oil spill impact along the archipelago's rocky shores, which was highly context-dependent.


Assuntos
COVID-19 , Poluição por Petróleo , Humanos , Poluição por Petróleo/efeitos adversos , Pandemias , COVID-19/epidemiologia , Biodiversidade
6.
Microb Ecol ; 86(3): 1552-1564, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36790500

RESUMO

Temperate rocky reefs often support mosaics of alternative habitats such as macroalgal forests, algal turfs and sea urchin barrens. Although the composition of epilithic microbial biofilms (EMBs) is recognized as a major determinant of macroalgal recruitment, their role in regulating the stability of alternative habitats on temperate rocky reefs remains unexplored. On shallow rocky reefs of the Island of Capraia (NW Mediterranean), we compared EMB structure among canopy stands formed by the fucoid Ericaria brachycarpa, algal turfs, and urchin barrens under ambient versus experimentally enhanced nutrient levels. The three habitats shared a core microbial community consisting of 21.6 and 25.3% of total ASVs under ambient and enhanced nutrient conditions, respectively. Although Gammaproteobacteria, Alphaproteobacteria and Flavobacteriia were the most abundant classes across habitats, multivariate analyses at the ASV level showed marked differences in EMB composition among habitats. Enhancing nutrient level had no significant effect on EMBs, although it increased their similarity between macroalgal canopy and turf habitats. At both ambient and enriched nutrient levels, ASVs mostly belonging to Proteobacteria and Bacteroidetes were more abundant in EMBs from macroalgal canopies than barrens. In contrast, ASVs belonging to the phylum of Proteobacteria and, in particular, to the families of Rhodobacteraceae and Flavobacteriaceae at ambient nutrient levels and of Rhodobacteraceae and Bacteriovoracaceae at enhanced nutrient levels were more abundant in turf than canopy habitats. Our results show that primary surfaces from alternative habitats that form mosaics on shallow rocky reefs in oligotrophic areas host distinct microbial communities that are, to some extent, resistant to moderate nutrient enhancement. Understanding the role of EMBs in generating reinforcing feedback under different nutrient loading regimes appears crucial to advance our understanding of the mechanisms underpinning the stability of habitats alternative to macroalgal forests as well as their role in regulating reverse shifts.


Assuntos
Ecossistema , Florestas , Animais , Nutrientes , Ouriços-do-Mar , Recifes de Corais
7.
Biol Conserv ; 263: 109175, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34035536

RESUMO

The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus, initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness.

8.
Sci Total Environ ; 781: 146650, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33798890

RESUMO

Microplastic pollution is increasingly recognized as a prominent threat to marine life. Understanding the role of bioturbators is crucial to determine to what extent marine sediments can act as a microplastic sink. The presence of microplastics has been documented in holothurians, but no study has investigated how the ingestion-egestion process influences their bioavailability. Using the Mediterranean deposit-feeder, Holothuria tubulosa, as a model system, we assessed if, upon ingestion, plastic particles are accumulated in pseudofeces and if the passage through the digestive tract reduces their size. To this end, the number, shape and colour of plastic particles was compared between pseudofeces and surrounding surficial sediments collected along the edges of a seagrass meadow. Pseudofeces were enriched in plastic fragments with respect to surficial sediments, suggesting a selective ingestion of fragments over fibres. By contrast, there was no difference in the size or colour of plastic particles between pseudofeces and sediments. In addition, by means of a laboratory experiment, we evaluated how microplastic resuspension rates from pseudofeces compares with those from surficial sediments. Under standard water movement conditions, the resuspension of labelled microplastics from pseudofeces was much greater than that from sediments (i.e., about 92% and 26% at the end of the experimental trial). Greater relative abundance of fine material (i.e., pelite) in pseudofeces than sediments could explain their physical instability and, hence, their lower microplastic retention. Our results suggest that pseudofeces of H. tubulosa not only represent a hotspot for plastic fragment concentration, but, due to their surficial deposition and rapid dissolution, they could also promote their transfer to the water column. Ingestion and egestion of microplastics by this sea cucumber, although not altering their size, may thus enhance their bioavailability.


Assuntos
Holothuria , Pepinos-do-Mar , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Plásticos , Água , Poluentes Químicos da Água/análise
9.
Glob Chang Biol ; 25(12): 4165-4178, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31535452

RESUMO

Anthropogenic stressors can alter the structure and functioning of infaunal communities, which are key drivers of the carbon cycle in marine soft sediments. Nonetheless, the compounded effects of anthropogenic stressors on carbon fluxes in soft benthic systems remain largely unknown. Here, we investigated the cumulative effects of ocean acidification (OA) and hypoxia on the organic carbon fate in marine sediments, through a mesocosm experiment. Isotopically labelled macroalgal detritus (13 C) was used as a tracer to assess carbon incorporation in faunal tissue and in sediments under different experimental conditions. In addition, labelled macroalgae (13 C), previously exposed to elevated CO2 , were also used to assess the organic carbon uptake by fauna and sediments, when both sources and consumers were exposed to elevated CO2 . At elevated CO2 , infauna increased the uptake of carbon, likely as compensatory response to the higher energetic costs faced under adverse environmental conditions. By contrast, there was no increase in carbon uptake by fauna exposed to both stressors in combination, indicating that even a short-term hypoxic event may weaken the ability of marine invertebrates to withstand elevated CO2 conditions. In addition, both hypoxia and elevated CO2 increased organic carbon burial in the sediment, potentially affecting sediment biogeochemical processes. Since hypoxia and OA are predicted to increase in the face of climate change, our results suggest that local reduction of hypoxic events may mitigate the impacts of global climate change on marine soft-sediment systems.


Assuntos
Dióxido de Carbono , Água do Mar , Carbono , Ciclo do Carbono , Sedimentos Geológicos , Humanos , Concentração de Íons de Hidrogênio , Hipóxia
10.
Mar Environ Res ; 149: 7-17, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31136874

RESUMO

The interaction between top-down and bottom-up forces determines the recovery trajectory of macroalgal forests exposed to multiple stressors. In an oligotrophic system, we experimentally investigated how nutrient inputs affected the recovery of Cystoseira brachycarpa following physical disturbance of varying intensities, both inside forested areas and at the boundary with sea urchin barrens. Unexpectedly, Cystoseira forests were highly resilient to disturbance, as they were able to recover from any partial damage. In general, the addition of nutrients sped up the recovery of Cystoseira. Thus, only the total canopy removal, in combination with either low nutrient availability or intense grazing pressure, promoted the expansion of mat-forming algae or urchin barrens, respectively. Our study suggests that the effects of enhanced nutrient levels may vary according to the trophic characteristics of the waterbody, and hence, are likely to vary among regions of the Mediterranean basin.


Assuntos
Monitorização de Parâmetros Ecológicos , Nutrientes , Água do Mar/química , Alga Marinha/crescimento & desenvolvimento , Adaptação Biológica , Animais , Biota , Herbivoria , Invertebrados , Região do Mediterrâneo , Ouriços-do-Mar/crescimento & desenvolvimento , Estresse Fisiológico
11.
Ecology ; 99(12): 2654-2666, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30157296

RESUMO

Understanding how increasing human domination of the biosphere affects life on earth is a critical research challenge. This task is facilitated by the increasing availability of open-source data repositories, which allow ecologists to address scientific questions at unprecedented spatial and temporal scales. Large datasets are mostly observational, so they may have limited ability to uncover causal relations among variables. Experiments are better suited at attributing causation, but they are often limited in scope. We propose hybrid datasets, resulting from the integration of observational with experimental data, as an approach to leverage the scope and ability to attribute causality in ecological studies. We show how the analysis of hybrid datasets with emerging techniques in time series analysis (Convergent Cross-mapping) and macroecology (Joint Species Distribution Models) can generate novel insights into causal effects of abiotic and biotic processes that would be difficult to achieve otherwise. We illustrate these principles with two case studies in marine ecosystems and discuss the potential to generalize across environments, species and ecological processes. If used wisely, the analysis of hybrid datasets may become the standard approach for research goals that seek causal explanations for large-scale ecological phenomena.


Assuntos
Big Data , Ecossistema , Ecologia , Pesquisa
12.
Oecologia ; 188(1): 23-39, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29845353

RESUMO

Seagrasses are key marine foundation species, currently declining due to the compounded action of global and regional anthropogenic stressors. Eutrophication has been associated with seagrass decline, while grazing has been traditionally considered to be a natural disturbance with a relatively low impact on seagrasses. In the recent years, this assumption has been revisited. Here, by means of a 16-month field-experiment, we investigated the molecular mechanisms driving the long-term response of Posidonia oceanica to the combination of nutrient enrichment, either as a chronic (press) or pulse disturbance, and herbivory. Changes in expression levels of 19 target genes involved in key steps of photosynthesis, nutrient assimilation, chlorophyll metabolism, oxidative-stress response and plant defense were evaluated through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). High herbivore pressure affected the molecular response of P. oceanica more dramatically than did enhanced nutrient levels, altering the expression of genes involved in plant tolerance and resistance traits, such as photosynthesis and defense mechanisms. Genes involved in carbon fixation and N assimilation modulated the response of plants to high nutrient levels. Availability of resources seems to modify P. oceanica response to herbivory, where the upregulation of a nitrate transporter gene was accompanied by the decline in the expression of nitrate reductase in the leaves, suggesting a change in plant-nutrient allocation strategy. Finally, press and pulse fertilizations altered nitrate uptake and reduction-related genes in opposite ways, suggesting that taking into account the temporal regime of nutrient loading is important to assess the physiological response of seagrasses to eutrophication.


Assuntos
Alismatales , Herbivoria , Nutrientes , Fotossíntese , Folhas de Planta
13.
Mar Environ Res ; 136: 54-61, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29519535

RESUMO

Coastal ecosystems are exposed to multiple stressors. Predicting their outcomes is complicated by variations in their temporal regimes. Here, by means of a 16-month experiment, we investigated tolerance and resistance traits of Posidonia oceanica to herbivore damage under different regimes of nutrient loading. Chronic and pulse nutrient supply were combined with simulated fish herbivory, treated as a pulse stressor. At ambient nutrient levels, P. oceanica could cope with severe herbivory, likely through an increase in photosynthetic activity. Elevated nutrient levels, regardless of the temporal regime, negatively affected plant growth and increased leaf nutritional quality. This ultimately resulted in a reduction of plant biomass that was particularly severe under chronic fertilization. Our results suggest that both chronic and pulse nutrient loadings increase plant palatability to macro-grazers. Strategies for seagrass management should not be exclusively applied in areas exposed to chronic fertilization since even short-term nutrient pulses could alter seagrass meadows.


Assuntos
Alismatales/fisiologia , Ecossistema , Herbivoria , Poluentes da Água/análise , Animais , Nitrogênio/análise , Fósforo/análise , Fotossíntese , Folhas de Planta
14.
Sci Rep ; 7(1): 13732, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29062025

RESUMO

The effects of climate change are likely to be dependent on local settings. Nonetheless, the compounded effects of global and regional stressors remain poorly understood. Here, we used CO2 vents to assess how the effects of ocean acidification on the seagrass, Posidonia oceanica, and the associated epiphytic community can be modified by enhanced nutrient loading. P. oceanica at ambient and low pH sites was exposed to three nutrient levels for 16 months. The response of P. oceanica to experimental conditions was assessed by combining analyses of gene expression, plant growth, photosynthetic pigments and epiphyte loading. At low pH, nutrient addition fostered plant growth and the synthesis of photosynthetic pigments. Overexpression of nitrogen transporter genes following nutrient additions at low pH suggests enhanced nutrient uptake by the plant. In addition, enhanced nutrient levels reduced the expression of selected antioxidant genes in plants exposed to low pH and increased epiphyte cover at both ambient and low pH. Our results show that the effects of ocean acidification on P. oceanica depend upon local nutrient concentration. More generally, our findings suggest that taking into account local environmental settings will be crucial to advance our understanding of the effects of global stressors on marine systems.


Assuntos
Alismatales/efeitos dos fármacos , Alismatales/metabolismo , Nutrientes/farmacologia , Água do Mar/química , Alismatales/genética , Alismatales/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Fotossíntese/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...